Drosophila grapes/CHK1 mutants are defective in cyclin proteolysis and coordination of mitotic events

نویسندگان

  • Tin Tin Su
  • Shelagh D. Campbell
  • Patrick H. O'Farrell
چکیده

The Drosophila grapes (grp) gene, which encodes a homolog of the Schizosaccharomyces pombe Chk1 kinase, provides a cell-cycle checkpoint that delays mitosis in response to inhibition of DNA replication [1]. Grp is also required in the undisturbed early embryonic cycles: in its absence, mitotic abnormalities appear in cycle 12 and chromosomes fail to fully separate in subsequent cycles [2] [3]. In other systems, Chk1 kinase phosphorylates and suppresses the activity of Cdc25 phosphatase: the resulting failure to remove inhibitory phosphate from cyclin-dependent kinase 1 (Cdk1) prevents entry into mitosis [4] [5]. Because in Drosophila embryos Cdk1 lacks inhibitory phosphate during cycles 11-13 [6], it is not clear that known actions of Grp/Chk1 suffice in these cycles. We found that the loss of grp compromised cyclin A proteolysis and delayed mitotic disjunction of sister chromosomes. These defects occurred before previously reported grp phenotypes. We conclude that Grp activates cyclin A degradation, and functions to time the disjunction of chromosomes in the early embryo. As cyclin A destruction is required for sister chromosome separation [7], a failure in Grp-promoted cyclin destruction can also explain the mitotic phenotype. The mitotic failure described previously for cycle 12 grp embryos might be a more severe form of the phenotypes that we describe in earlier embryos and we suggest that the underlying defect is reduced degradation of cyclin A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grapes(Chk1) prevents nuclear CDK1 activation by delaying cyclin B nuclear accumulation

Entry into mitosis is characterized by a dramatic remodeling of nuclear and cytoplasmic compartments. These changes are driven by cyclin-dependent kinase 1 (CDK1) activity, yet how cytoplasmic and nuclear CDK1 activities are coordinated is unclear. We injected cyclin B (CycB) into Drosophila melanogaster embryos during interphase of syncytial cycles and monitored effects on cytoplasmic and nucl...

متن کامل

Regulation of mitosis in response to damaged or incompletely replicated DNA require different levels of Grapes (Drosophila Chk1).

Checkpoints monitor the state of DNA and can delay or arrest the cell cycle at multiple points including G1-S transition, progress through S phase and G2-M transition. Regulation of progress through mitosis, specifically at the metaphase-anaphase transition, occurs after exposure to ionizing radiation (IR) in Drosophila and budding yeast, but has not been conclusively demonstrated in mammals. H...

متن کامل

Genes involved in sister chromatid separation are needed for b-type cyclin proteolysis in budding yeast

B-type cyclin destruction is necessary for exit from mitosis and the initiation of a new cell cycle. Through the isolation of mutants, we have identified three essential yeast genes, CDC16, CDC23, and CSE1, which are required for proteolysis of the B-type cyclin CLB2 but not of other unstable proteins. cdc23-1 mutants are defective in both entering and exiting anaphase. Their failure to exit an...

متن کامل

The E2-C Vihar Is Required for the Correct Spatiotemporal Proteolysis of Cyclin B and Itself Undergoes Cyclical Degradation

BACKGROUND Proteolytic degradation of mitotic regulatory proteins first requires these targets to be ubiquitinated. This is regulated at the level of conjugation of ubiquitin to substrates by the anaphase-promoting complex/cyclosome (APC/C) ubiquitin-protein ligase. Substrate specificity and temporal activity of the APC/C has been thought to lie primarily with its two activators, Cdc20/Fizzy an...

متن کامل

No Evidence that Cse1p Is Required for Cyclin Proteolysis

In the article entitled “Genes Involved in Sister Chromatid Separation Are Needed for B-Type Cyclin Proteolysis in Budding Yeast” (Cell 81, 269–278, 1995), we described the isolation of mutants defective in the degradation of the mitotic cyclin Clb2p. By complementation of these mutants, we identified the genes CDC16 and CDC23, which encode subunits of the anaphasepromoting complex. One of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 9  شماره 

صفحات  -

تاریخ انتشار 1999